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1. Introduction 
 

The uniaxial (unconfined) compressive strength (UCS) 

test is a widely-used test for rock strength classification 

(Wang et al. 2018). However, it requires well-machined 

specimens and large testing machines and is, therefore, 

time-consuming and expensive, essentially confined to the 

laboratory setting. Researchers have been working on 

various alternatives to improve the convenience of 

obtaining UCS (Broch and Franklin 1972). Point load test 

(PLT), once used as an alternative for direct tensile strength 

test (Bieniawski 1975, Broch and Franklin 1972), attracts 

the attention of researchers and engineers due to its high 

efficiency and simplicity. This test loads the core specimens 

or irregular rock fragments between the truncated, conical 

platens (ASTM standard D5731-16 2016) at failure. Then 

the peak load, specimen size, specimen shape, and loading 

mode become variables to calculate the point load strength 

index (Is(50)). Previous studies validated that the UCS σc can 

be derived through the equation σc = CIs(50), where C is a 

constant depending on rock type, after observing large 

amount of tests results with various rock type (ASTM 

standard D5731-16 2016, Broch and Franklin 1972, 

Franklin 1985, Wen et al. 2019). 
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There has been significant research on the procedures 

for this test and proper value for the constant C for different 

types of rock (Kaya and Karaman 2016, Sarici and Ozdemir 

2018, Wong et al. 2017, Yin et al. 2017). Since the 

specimens in PLT can be both irregular and cylinder-

shaped, researchers have also studied the size and shape 

effects in PLT extensively (Kabilan et al. 2017, Şahin et al. 

2020, Wei et al. 2019, Xue et al. 2018). Some researchers 

began to pay attention to the failure mode of point load test 

with different rock types (Basu et al. 2013, Everall and 

Sanislav 2018). The difference between the isotropic and 

schist rocks were mainly discussed. Zhang (2016) adopted 

PLT to analyze the strength anisotropy of DanBa quartz 

mica schist. Two types of failure modes have been observed 

by Zhang according to the fracture orientation to bedding 

layers. 
However, despite the numerous efforts that were made 

to apply this method as an alternative to the UCS test, only 

a few attempted to understand the mechanism behind these 

applications. Serati (2018) used the point load index to 

measure the tensile strength of rock, concluding that the 

induced tensile stress at the center of a diametral point load 

specimen as well as the point load strength index is a 

function of both Poisson’s ratio and sample length. Hoek 

(1977) indicated that the mechanics of the PLT cause the 

rock to fail in tension. He provided the stress-induced at the 

center of a disc of diameter D and thickness t as a result of 

the application of a diametrically opposed point load P. 

Hoek claimed that the ratio between the tensile strength and 

 
 
 

A self-confined compression model of point load test 
and corresponding numerical and experimental validation 

 

Qingwen Shi1, Zhenhua Ouyang1, Brijes Mishra2 and Yun Zhao3 
 

1School of Mine Safety, North China Institute of Science and Technology, Sanhe, Hebei 065201, China 
2Department of Mining Engineering, The University of Utah, Salt Lake City, Utah 84112, USA 

3Department of Mineral Resources, Xingfa Group, Yichang, Hubei 443000, China 

 
(Received December 2 2021, Revised December 21, 2021, Accepted June 20, 2023) 

 
Abstract.  The point load test (PLT) is a widely-used alternative method in the field to determine the uniaxial compressive 

strength due to its simple testing machine and procedure. The point load test index can estimate the uniaxial compressive 

strength through conversion factors based on the rock types. However, the mechanism correlating these two parameters and the 

influence of the mechanical properties on PLT results are still not well understood. This study proposed a theoretical model to 

understand the mechanism of PLT serving as an alternative to the UCS test based on laboratory observation and literature survey. 

This model found that the point load test is a self-confined compression test. There is a compressive ellipsoid near the loading 

axis, whose dilation forms a tensile ring that provides confinement on this ellipsoid. The peak load of a point load test is linearly 

positive correlated to the tensile strength and negatively correlated to the Poisson ratio. The model was then verified using 

numerical and experimental approaches. In numerical verification, the PLT discs were simulated using flat-joint BPM of PFC3D 

to model the force distribution, crack propagation and BPM properties’ effect with calibrated micro-parameters from laboratory 

UCS test and point load test of Berea sandstones. It further verified the mechanism experimentally by conducting a uniaxial 

compressive test, Brazilian test, and point load test on four different rocks. The findings from this study can explain the 

mechanism and improve the understanding of point load in determining uniaxial compressive strength. 
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Fig. 1 Fracture surface morphology variation along the 

loading axis 

 

 

compressive strength stays stable for a particular brittle 

rock, and thus one can obtain the compressive strength by 

this ratio. Hoek’s work sheds light on the mechanisms of 

the PLT to reveal the compressive strength, leading 

researchers to realize the significance of the stress field in 

the PLT disc when evaluating the strength of the rocks. 

However, many researchers have recognized that the 

contact area between the truncated conical loading machine 

and the disc is a circle area instead of a perfect point. The 

area also varies with different types of rocks. The loading 

area can make a big difference in theoretical derivation, 

which was not considered in Hoek’s hypothesis. 

It is noted that previous studies are mainly concerned 

with the practical application of this PLT. Few 

investigations paid attention to the intrinsic mechanism of 

the point load test’s capacity to reveal the UCS strength. 

The present study attempts to fill the gap by proposing a 

theoretical model of the PLT mechanism based on a large 

number of laboratory observations and existing research as 

well. The model was systematically verified with numerical 

and experimental methods. This study will further enhance 

the understanding of the mechanism of using PLT as an 

alternative to the uniaxial compressive test. 

 

 

2. Self-confined compression model of PLT 
 

For understanding the intrinsic mechanism of a PLT disc 

failure, surface analysis was conducted on a large number 

of failed specimens. A typical obvious plumose arrangement 

(Xie et al. 1999) of hackle marks was observed at the 

contact points of the platen with the specimen, as shown in 

Fig. 1. The white semicircular area in Fig. 1 is the crushed 

area by the point load around which the hackle marks are 

radially distributed. These hackle marks are indicative of 

tensile failure according to fracture surface analysis theory 

(Lutton 1970, Lutton 2006, Xie et al. 1999). The tensile 

failure near the contacting point was more clearly illustrated 

using photoelasticity conducted by Frocht (1974). However, 

Fig. 1 shows that the plumose arrangement disappears in the 

area far from the loading axis of the specimen, indicating a 

different failure mechanism in this area. 

Literature survey implies that the different failure 

mechanisms that occurred in the area far from the loading 

axis could be a tensile stress-induced failure. For example, 

Peng (1976) pointed out the majority of the specimen is in a 

compressive state as shown in Fig. 2(a). This was further 

verified by a reported observation of the stress field in a 

  
(a) Cylindrical specimen 

(Peng 1976) 

(b) Spherical specimen 

(Russell and Muir Wood 2009) 

Fig. 2 2D stress field 

 

 

Fig. 3 Front and top view of the cross-section of the 

distribution of the sample 

 

 

Fig. 4 Stress state of the unit on the inner edge of the tensile 

ring 

 

 

PLT specimen (Russell and Muir Wood 2009). Russel and 

Wood (2009) exhibited an ellipsoid-shaped compressive 

zone along the loading axis in an elastic sphere, as shown in 

Fig. 2(b). Both investigations showed that the maximum 

tensile stress occurs around the loading point. This tensile 

stress decreases rapidly and becomes compressive stress in 

the central portion of the specimen but exists in the area far 

from the axis. The findings can perfectly explain the 

disappearance of the plumose arrangement observed in Fig. 

1. 

Based on the laboratory observation and existing 

research above, it is found that the rock around the loading 

axis (named the near-axis rock here) is actually in a 

compressive state (see Fig. 3); According to the shape of 

hackle marks in Fig. 1 and stress distribution in Fig. 2, the 

compressive zone is assumed as an ellipsoid in the present 

study. Due to the Poisson effect, the rock mass composing 

the ellipsoid dilates under the compressive stress, which 

introduces tensile strain and stress in the rock slightly 

further from the loading axis. The tensile zone forms a ring 

as shown in Fig. 3. Meanwhile, the far-axis rock provides 

confining stress to the ellipsoid as reaction stress and 

formed a self-confined compression model depicted in Fig. 
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3. Based on this model, the correlation between the point 

load test result and the rock mass’s mechanical properties 

are analyzed. 

Taking the unit located at the inner edge of the tensile 

ring out for stress analysis (see Fig. 4), one can see the 

stress state of a rock unit where tensile failure happens. 

According to the elastic-plastic mechanism, 

𝜎𝑡 = −𝜎3 ⋅ 𝑁𝜑 + 2𝑐 ⋅ 𝑁𝜑  (1) 

𝑁𝜑 =
1+𝑠𝑖𝑛𝜙

1−𝑠𝑖𝑛𝜙
  (2) 

Where c is cohesion of the rock and 𝜑 denotes friction 

angle of the rock. 

At the point of failure, the tensile stress will reach the 

tensile strength 

𝜎𝑡 = [𝜎𝑡]  (3) 

Thus, 

𝜎3 = 2𝑐 −
1

𝑁𝜑
⋅ [𝜎𝑡]  (4) 

Assuming the axial strain is 𝜀1, the lateral strain will be 

𝜀2 = 𝜇𝜀1, and the strain of the tensile ring (occurring in the 

edge of the ring) will be 𝜀𝑟 = 𝜀2. So the maximum tensile 

stress can be deduced as 

[𝜎𝑡] = 𝐸 ⋅ 𝜀𝑟 = 𝐸 ⋅ 𝜀2 = 𝜇𝐸 ⋅ 𝜀1  (5) 

The axial strain of compressive ellipsoid will be 

𝜀1 =
1

𝐸
[𝜎1 − 𝜇(𝜎2 + 𝜎3)] =

1

𝐸
[𝜎1 − 2𝜇 ⋅ 𝜎3]  (6) 

With Eqs. (5) and (6), the relationship between [𝜎𝑡] and 

𝜎1 can be demonstrated as 

𝜎1 =
1

𝜇
⋅ [𝜎𝑡] + 2𝜇 ⋅ 𝜎3  (7) 

So the relationship with a loading stress 𝜎1 and tensile 

strength of the rock disc can be derived as 

𝜎1 = (
1

𝜇
−

2𝜇

𝑁𝜑
) ⋅ [𝜎𝑡] + 4𝜇 ⋅ 𝑐  (8) 

Assuming the contact area with the loading machine and 

disc as A, the peak load can be expressed as 

𝑃𝑚𝑎𝑥 = 𝐴 ⋅ 𝜎1 = (
𝐴

𝜇
−

2𝐴𝜇

𝑁𝜑
) ⋅ [𝜎𝑡] + 4𝐴𝜇 ⋅ 𝑐  (9) 

According to this discussion, the ellipsoid is 

experiencing a confined compressive test; the confinement 

is actually caused by itself, referred to as a self-confined 

compression test. The peak load of a point load test is 

linearly positive correlated to the tensile strength of the 

sample. Based on this, the point load test can reveal the 

confined compressive strength of the rock mass under 

confining stress determined by its tensile strength. In order 

to verify the Eq. (9) deduced from the proposed self-

confined compression model, numerical modeling and 

laboratory test are conducted in the following sections. 

 

 

3. Validation of self-confined compression model 
with bonded particle material 

To check the self-confined compression model, a series 

of numerical modeling was conducted using Particle Flow 

Code 3D (PFC3D) (Itasca Consulting Group 2019). In the 

modeling, bonded particle material (BPM) capable of 

replicating Berea sandstone behavior was firstly generated. 

The radii increase technique was used for creating the BPM. 

Specifically, we first created a material vessel consisting of 

six walls. The particles were then created with diameters 

satisfying a uniform particle-size between minimum radius 

and maximum radius. Then the particle radii were increased 

to their final values with no overlap. Secondly, using the 

generated BPM, the force distribution and crack 

propagation during the point load test were probed and 

discussed in comparison with the self-confined compression 

model. Then the material properties’ effect on the PLT 

results are verified against Eq. (9) deduced from the self-

confined compression model above. 

 

3.1 Generation of the PLT disc with BPM 
 

PFC3D, a discrete-element method (DEM), was adopted 

due to its advantage over continuum modeling in modeling 

fracture damage (Shi and Mishra 2020, Shi et al. 2022). The 

BPM in PFC models the intact rock and introduces the 

mechanical behavior of the fractures by modifying the 

contact models at contacts intercepting fractures (Koyama 

and Jing 2007). 

To generate the PLT disc with the capacity to replicate 

the behavior of actual rock mass, the BPM was calibrated 

upon laboratory tests with Berea sandstone. The procedure 

and results of the calibration and the PLT disc are illustrated 

in this section. 
 

3.1.1 Laboratory tests on Berea sandstones 
The point load test is known as not applicable for soft 

rocks. The ASTM standard (ASTM standard D5731-16 

2016) indicates that this method should be applied only to 

medium-strength rock whose compressive strength is 

greater than 15MPa. Therefore, this research performed 

tests on Berea sandstone specimens, quarried from the 

Northern Ohio deposits of Cleveland Quarries. Made up of 

well-sorted and well-rounded predominately quartz grains 

(Churcher et al. 1991), the Berea sandstone is well known 

as highly homogenous, well-characterized, and readily 

available. Because of all the above features, Berea 

sandstone has been widely used in geological research for 

years as a standard material in core analysis research. 
With the selected Berea sandstone, the lab ran three 

groups of UCS tests (see Table 1) and four groups of point 

load tests (see Table 2) according to the ASTM standard 

(ASTM standard D5731-16 2016). When using point load 

test as an alternative of UCS test, there exists a large 

variability of point load test results due to defects in the 

specimen and size effect as well. Therefore, different sizes 

of point load test specimens are usually used to eliminate 

influence of these external factors. Considering replicating 

actual scenarios of performing point load test, point load 

test was conducted on discs with different thicknesses for 

following calibration. Besides, the more models calibrated, 

the more accurate the micro-parameters can reproduce the 

real rock. The MTS servo-controlled compression testing 
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(a) MTS servo-controlled 

compression testing machine 
(b) Point load test machine 

Fig. 5 Test machines for UCS test and point load test 
 

Table 1 UCS test results 

Specimen # 
Uniaxial compressive strength 

(MPa) 
Young’s Modulus 

(GPa) 

1 63.7 11.3 

2 65.7 10.0 

3 58.1 10.2 

Avg. 62.5 10.5 

 

Table 2 Point load test results 

Thickness (mm) Specimen # Peak load (N) 

19 

A-1 2872.5 

A-2 1888.4 

A-3 4174.5 

21 

B-1 4621.8 

B-2 4124.8 

B-3 4671.5 

27 

C-1 4671.5 

C-2 4025.4 

C-3 5466.7 

34 

D-1 6013.3 

D-2 5665.4 

D-3 - 

 

 

machine and point load test machine, as shown in Fig. 5, 

conducted these tests for calibration. The displacement of 

the loading platen of MTS servo-controlled compression 

testing machine was monitored to obtain the axial strain of 

the samples. 

Table 1 and Table 2 showed the test results and Fig. 6 

shows the failed specimens in laboratory tests. 

 

3.1.2 Calibration of the BPM 

The 3D BPM micro-parameters were determined by 

demonstrating that the material matches much of the 

response obtained during the UCS tests and PLT of a typical 

compact rock-in this case, Berea sandstone. Flat-jointed 

constitutive model was used to generate the BPM. The 

BPM UCS test and PLT with various disc thicknesses were 

all used for calibration. 

The dimension of the UCS test model was consistent 

with the specimens used in the lab, with a diameter of 54.1 

mm and a length of 116.1mm. Additionally, the thickness of 

the point load test models was set to be the same as 

  
(a) Uniaxial compressive test (b) Point load test 

Fig. 6 Berea sandstone failure 

 

  
(a) Uniaxial compressive test (b) Point load test 

Fig. 7 Calibration results 

 

  
(a) Uniaxial compressive test (b) Point load test 

Fig. 8 Comparison between numerical and laboratory 

failure mode 

 

 

laboratory specimens, which is 19 mm, 21 mm, 27 mm, and 

33 mm, respectively. The diameter was set at 54.1 mm. 

Porosity ratio in PFC3D, defined as the ratio of the volume 

of pores to the volume of bulk BPM, not only presents the 

geometric distribution of the particles but also pose 

significant impact on the mechanical behavior of the BPM. 

In the present numerical study, the porosity ratio of 0.2 

recommended by Potyondy (2018) for sedimentary rock 

was used. The minimum radius of the particle assembly was 

0.5 mm, and the particle size ratio was 1.5. The stiffness 

ratio was 1.0. The particle radii were set to have a uniform 

distribution in these samples. The wall, which is a rigid 

element in PFC, simulated the platen in the UCS test and 

the loading indenters in PLT. In this research, a 5-mm radius 

spherical indenter was used to simulate the indenters 

(ASTM standard D5731-16 2016). 

Through multiple cycles of trial and error, the 

determined parameters were obtained. Fig. 7(a) shows the 

calibrated and laboratory strain-stress curve for the UCS 

test. The predicted Young’s modulus and UCS are 12.9 GPa 

and 66.5 MPa, which are in good agreement with the 

laboratory results. The difference in the behavior of the 

model and laboratory test is the absence of nonlinear 

behavior at the beginning of the test. Heterogeneity and 

pores present in the actual rock cause some initial 
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Table 3 Parameters used to calibrate the model 

Parameter Physical meaning Value 

porosity Porosity ratio 0.2 

fj_radius 
Minimum radius of the particle (mm) 0.5 

Maximum radius of the particle (mm) 0.75 

fj_kratio Normal-to-shear stiffness ratio 1.0 

fj_fric Friction coefficient 0.577 

fj_emod Effective modulus (GPa) 7.0 

fj_ten Tensile strength (MPa) 1.837 

fj_fa Friction angle (degrees) 25 

fj_coh Cohesion (MPa) 17.11 

 

 

compaction resulting in the nonlinear behavior in a 

laboratory specimen (Jaeger et al. 2009). Fig. 7(b) shows 

the comparison between numerical results and laboratory 

results of PLT for specimens with varied thicknesses. It is 

observed that the macro properties from the numerical tests 

matched the laboratory tests. 

The comparison between the numerical and laboratory 

failure patterns is shown in Fig. 8. The yellow particles, set 

as translucent, represent the assembly of the sample while 

the red disks represent the cracks caused by the loading 

process. The green sphere in Fig. 8(b) represents the 

indenter. The failure modes in the numerical model matched 

well with experimental observations. The laboratory PLT 

specimen failed along a single plane while the numerical 

model followed a multi-plane mode. Both failure modes are 

accepted as per ASTM standard (ASTM standard D5731-16 

2016) and various published literature (Basu et al. 2013, 

Everall and Sanislav 2018). In general, the failure mode 

further validated the reliability of the numerical models in 

this study. The BPM models in PFC3D can capture the 

fracturing behavior of the Berea sandstone. The parameters 

adopted in the BPM are listed in Table 3. 

 

3.2 Force distribution and crack propagation during a 
PLT 
 

Observing the stress/force distribution and crack 

propagation process plays a key role in unstanding the 

mechanism of PLT. In this section, the calibrated micro-

parameters derived above were used for these 

investigations. 

 

3.2.1 Force distribution 
Fig. 9 presents the force distribution in the point load 

test disc before failure. The compressive and tensile forces 

are generated in different colors—red and green, 

respectively. The boldness of the force chain represents the 

magnitude of the force. This figure illustrates that the 

distribution feature of the force is distinctive. The 

compressive force is mainly distributed around the loading 

axis in an ellipsoid shape with relatively high magnitude, 

referred to as a compressive ellipsoid. The highest 

compressive force occurs at the elements immediately next 

to the loading point, decreasing rapidly as it moves toward 

the interior of the specimen. Meanwhile, outside of the 

 

Fig. 9 The force chain in the point load test sample (the 

black dashed line illustrates the approximate location and 

shape of the compressive ellipsoid) 

 

 
Fig. 10 The load and crack number variation and 

corresponding crack propagation  during a point load test 

(the pink dashed lines represent the load level (in 

percentage of peak load) at which the crack propagation is 

extracted; the blue flakes represent the tensile cracks while 

the green ones represent shear cracks; the black dashed 

lines represent the shape and location of the compressive 

ellipsoid; the yellow spheres are the loading indenters) 

 

 

ellipsoid, tensile areas are present around with a lower 

magnitude than the compressive force. This scenario agrees 

well with the self-confined model proposed in Section 2. 

 

3.2.2 Crack propagation 
BPM discs of 21mm-thickness were used for crack 

propagation observation. Fig. 10(a) shows the axial load-

timestep curve and crack number-timestep curve throughout 

the point load test. As seen in this cumulative crack plot, 

most fracturing surges around 85% of the peak load. Typical 

crack propagation scenario during the test were extracted at 

30%, 35%, 72%, 85% and 100% of the peak load 

respectively as shown in Fig. 10(b). This figures depict the 

crack distributions as bi-colored flakes in which green 

represents shear-induced failure and blue represents 

tension-induced failure. The loading indenters are depicted 

as a pair of yellow spheres. The black dashed lines in Fig. 

10(b) depicts the shape and location of the compressive 

ellipsoid at various load levels. 

Fig. 10(b) shows that the cracks initiate at the loading 

points at 30% of the peak load, with few cracks. During this 

stage some shear cracks develop around the loading points. 

With the increase in the load, the cracks extend along the 
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Fig. 11 Fitting results for peak load versus tensile strength 

for discs with various thickness 

 

 

loading axis, as shown at 35% and 72% of the peak load. 

And only tensile cracks propagate through the specimen. 

Upon the 72% of the peak load, the cracks are evenly 

distributed along the loading axis, and the upper and lower 

cracks connect to each other. The trend that cracks starts 

from loading ends and develop toward the central portion 

agrees well with the typical numerical results of the 

compressive test (Yoon 2007, Zhang et al. 2019). At the 

same time, it is observed the cracks are distributed within 

the range of the compressive ellipsoid which is shown by 

the black dashed lines when the load is less than 72% of the 

peak load. This stage corresponds to the rock dilation under 

the compressive stress as described in the self-confined 

compression model in Section 2. 

When the test reached 85% of the peak load at which the 

crack number surges, the splitting cracks develop in the 

specimen. With the increase in the load, the splitting cracks 

continue to extend forward to the edge of the disc. When 

the load increases to 100% of peak load, all the splitting 

cracks reach the edge and the disc is thoroughly penetrated. 

At this point, the compressive ellipsoid zone loses its 

confinement applied by the tensile area and the disc was 

fully split into fragments. The cracking propagation with 

the load development is observed to agree with the self-

confined compression model. 

 

3.3 BPM properties’ effect on PLT results 
 

Based on the self-confined compression model, the PLT 

peak load is linearly positive to the tensile strength of the 

rock mass. And the tensile failure in the PLT disc is actually 

induced by the dilation of the near-axis rock. Poisson’s ratio 

is known to affect the degree of dilation. To verify the self-

confined compression model put forward above, the 

generated BPM was used to model the mechanical relation 

between peak load with Poisson’s ratio and the tensile 

strength. 

 

3.3.1 PLT peak load and the tensile strength 
The tensile strength can be changed directly using the 

program’s internal language (FISH) in the PFC model. The 

thickness of the specimen was maintained to be the same 

with laboratory specimens, which are 19 mm, 21 mm, 27 

mm, and 34 mm, respectively. For each thickness, BPM 

with tensile strength of 0.2 MPa, 0.5 MPa, 1.0 MPa, 1.5 

 

Fig. 12 Relationship between PLT peak load and Poisson’s 

ratio of the BPM 

 

 

MPa, 2.0 MPa, 2.5 MPa, 3.0 MPa, 4.0 MPa and 5.0 MPa 

were generated and compressed to failure with point load 

test in sequence. 

Fig. 11 shows the curve fitting result for the relation 

between peak load and tensile strength for specimens with 

different thicknesses. The R2 represents the coefficient of 

determination of the fitting trendlines. This figure clearly 

shows that for each thickness, when other properties remain 

unchanged, the peak load of the point load tests are linearly 

positive correlated to the tensile strength of the disc. The 

linear lines perfectly fit the scatter points, indicating that the 

mathematical relation of numerical simulations agrees well 

with the Eq. (9) attained from self-confined compression 

model. 

 
3.3.2 PLT peak load and the tensile strength 
Poisson’s ratio determines the extent of the dilation. 

This section investigates the impact of Poisson’s ratio on 

the peak load of the point load using a BPM disc with the 

thickness of 19 mm, 21 mm, 27 mm, and 34 mm, 

respectively. 
In PFC, the Poisson’s ratio (v) can be defined directly 

by the normal-to-shear stiffness ratio (fj_kratio in Table 3). 

v is related to stiffness ratio fj-kratio with v increasing as fj-

kratio increases (Itasca Consulting Group 2019, Potyondy 

2017). The fj_kratio was varied from 1.5 to 4.0 with an 

interval of 0.5 because the fj_kratio is normally set no 

larger than 4.0 in BPM models. Accordingly, BPM with 

different Poisson’s ratios, whose calculation was coded into 

the PFC3D model, was obtained and then used to conduct 

PLT. Fig. 12 shows the relationship between peak load and 

Poisson’s ratio of discs with different thicknesses. 
It is observed the peak load decreases monotonically 

with the Poisson’s ratio of the models for a specific 

thickness. This verifies the PLT self-confined compression 

model wherein the dilation of compressive ellipsoid causes 

tensile stress and finally leads to failure. The larger the 

Poisson’s ratio, the more the compressive ellipsoid will 

dilate under a specific load and the larger tensile stress will 

be induced. The PLT peak load will be reached once the 

tensile strength is exceeded by this induced tensile stress as 

depicted in the self-confined compression model. 

 
 

4. Experimental validation of self-confined 
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compression model 
 

To experimentally verify the self-confined compression 

model, the effect of rock’s properties, i.e., tensile strength 

and Poisson’s ratio, on the PLT results was evaluated by 

testing specimens of different rock types. These tests 

included four different types of rocks: Marcellus shale, gray 

sandstone, white sandstone, and Berea sandstone. Marcellus 

shale is a part of the sedimentary system known as the 

Appalachian Basin. The gray and white sandstone used in 

the research was cored from different locations of an 

underground coal mine in Pennsylvania, US. All the 

specimens used in this research were fine-grained without 

inclusions. 
 

4.1 Experiment setup 
 

Three types of tests, i.e., UCS test, Brazilian test, and 

PLT, were performed on each rock type to determine the 

material’s Poisson ratio, tensile strength, and corresponding 

PLT peak load. The UCS test specimens were standard UCS 

cylinders with a diameter of 54 mm and a height of greater 

than 108mm (a height to diameter ratio of larger than 2.0). 

The circumferential extensometer was used for measuring 

the lateral strain in the cylindrical specimen. The prepared 

Brazilian test specimens were standard discs with a 

diameter of 54 mm and a thickness of 27 mm (diameter to 

thickness ratio of 0.5). All the PLT specimens were set at a 

diameter of 54 mm and a thickness of 25 mm. MTS planar 

platens, standard Brazilian jaws, and truncated conical 

indenters applied the load, respectively, as per the ASTM 

standards (ASTM Standard D3148-02 2002, ASTM 

Standard D3967-16 2016, ASTM standard D5731-16 2016), 

as shown in Fig. 13. For each rock type, we conducted two 

groups of UCS tests, five groups of Brazilian tests, and 

three groups of PLT. The displacement control mode was 

utilized in both UCS tests and Brazilian tests. Specificly, an 

axial displacement rate of 0.2 mm/min was used in the UCS 

tests and an axial displacement rate of 0.1 mm/min was 

used in the Brazilian tests. These loading rates guaranteed 

that the failure occurs within required test time, which is 2 

to 15 min for UCS test and 1 to 10 min for Brazilian test. In 

the Brazilian test, the displacement control mode was 

realized by controlling the plate displacement rate. 

 

4.2 Laboratory results and discussion 
 

The Poisson’s ratio and tensile strength of each rock 

type were calculated using the formula given by ASTM 

standards (ASTM Standard D3148-02 2002, ASTM 

Standard D3967-16 2016, ASTM standard D5731-16 2016). 

When calculating the Poisson’s ratio, the lateral strain 

which was obtained by the circumferential extensometer 

has to be used. However, it has been identified that the 

circumferential extensometer causes an error varying from 

5% to 9% because it does not include the complete 

perimeter of the test cylinder (Masoumi et al. 2015), as 

shown by the gap formed by both ends of the chain in Fig. 

14. For accuracy of verifying the relationship between PLT 

results and Poisson’ ratio, the calculation of the lateral strain 

 

Fig. 13 Loading conditions of UCS test, Brazilian test, and 

PLT 

 

 

Fig. 14 Attachment between the extensometer and the 54-

mm-diameter specimen 

 

Table 4 Test results of selected rocks 

 Poisson’s ratio 
Tensile strength 

(MPa) 

PLT peak load* 

(kN) 

Marcellus 

shale 

0.22 7.54 14.67 

0.24 5.52 13.10 

 6.70 12.58 

 8.23  

 7.49  

Avg.=0.23 Avg.=7.10 Avg.=13.45 

Gray 

sandstone 

0.12 14.59 28.12 

0.12 13.78 18.86 

 12.55 17.82 

 11.54  

 14.13  

Avg.=0.12 Avg.=13.32 Avg.=21.60 

White 

sandstone 

0.06 13.22 26.90 

0.08 13.95 26.03 

 16.37 25.33 

 14.48  

 14.72  

Avg.=0.07 Avg.=14.55 Avg.=26.08 

Berea 

sandstone 

0.28 4.22 10.48 

0.27 4.16 9.61 

 4.57 8.73 

 3.95  

 -  

Avg.=0.275 Avg.=4.23 Avg.=9.61 

*All the PLT results were obtained from discs with an identical 

thickness of 21 mm. 

 

 

was modified with a modification factor of c=0.957 

obtained from the formula given below (Masoumi et al. 

2015) 

Circumferential extensometer Uniaxial compressive 
test cylinder

G
a
p

Angle formed by the gap 

and cylinder center
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(a) Tensile strength (b) Poisson’s ratio 

Fig. 15 The variations of PLT peak load versus 

 

 

𝑐 =
2 𝑠𝑖𝑛 𝜃+2 𝑐𝑜𝑠 𝜃(𝜋−𝜃)

2𝜋
  (10) 

Where 𝜃 denotes half the angle formed by the gap the 

center of the cylinder as shown in Fig. 14. It was measured 

as 17.5˚ in our laboratory tests here. 

Table 4 gives the details of the test results of the 

Poisson’s ratio, Brazilian tensile strength and corresponding 

PLT results of each rock type. 

The PLT test results were plotted against the rock’s 

tensile strength and Poisson’s ratio, respectively, as shown 

in Fig. 15. The black dashed lines in Fig. 15 presents the 

linear trendline of the average PLT peak load against the 

tensile strength (Fig. 15(a)) and the Poisson’s ratio (Fig. 

15(b)). Excluding the impacts of other mechanical 

parameters, the PLT peak load is linearly positive correlated 

to the tensile strength, verifying the Eq. (9) deduced from 

self-confined compression model in Section 2 and the 

numerical results. Similarly, Fig. 15(b) shows that the PLT 

peak load is negatively related to the Poisson’s ratio, which 

is also in agreement with Eq. (9) and the numerical results. 
Generally, results from the experimental and numerical 

analysis both verified the self-confined compression model 

proposed in the present research. In fact, the linear relation 

between PLT peak load and the rock’s tensile strength can 

also be validated from the published literature. In an 

expression T=KP/h2 proposed by Timoshenko and Goodier 

(1951), where T is tensile strength, K is constant, P is PLT 

peak load and h is the height of the PLT disc, the tensile 

strength is linearly positive correlated to the PLT peak load. 

This expression was substantiated by the work of Sternberg 

and Rosenthal (1952). Besides, Heidari et al. (2012) 

experimentally proved that the PLT strength index Is(50) is 

linearly correlated to the Brazilian tensile strength of 

gypsum rocks with different moisture conditions, as shown 

in Fig. 16. Is(50) is proportional to the PLT peak load for a 

specific dimension, indicating that the gypsum rocks’ PLT 

peak load is linearly correlated to its tensile strength. 

 
 

5. Conclusions 
 

This study proposed a theoretical model to understand 

the mechanism of PLT serving as an alternative to the UCS 

test based on laboratory observation and literature survey. 

The model was then verified using numerical and 

experimental approaches. 
The fracture surface morphology on a large number of 

PLT indicates that there is a compressive area along the 

  
(a) Air-dried gypsum rock (b) Saturated gypsum rock 

Fig. 16 Tensile strength versus Is(50) 

 

 
loading axis but turned into tensile stress in the area far 

from the loading axis. Combined with existing research, a 

self-confined compression model of PLT was proposed. 

According to the proposed model, the compressive stress is 

distributed around the loading axis in an ellipsoid shape. 

Outside of the ellipsoid, there is a ring-shaped area present 

around. The ring-shaped area is in a tensile state due to the 

dilation of the ellipsoid and it applies the confined stress to 

the ellipsoid. Based on this interaction between the 

compressive ellipsoid and tensile ring, the model 

demonstrates that the peak load of a point load test 

correlates positively with the tensile strength of the rock. 
Using the BPM of PFC3D which was calibrated based 

on laboratory tests upon Berea sandstone, the self-confined 

compression model was verified. Numerical results showed 

that the compressive force is distributed around the loading 

axis. The circular tensile zone surrounds the compressive 

zone. In addition, the propagation of the cracks in the PLT 

disc to the load variation was numerically compared. The 

process from initiation of splitting fractures to fully failure 

of the disc agrees well with the self-confined compression 

model. The effect of tensile strength and Poisson’s ratio on 

the PLT results were also found to be in good consistency 

with the self-confined compression model. The Poisson’s 

ratio, Brazilian tensile strength and PLT peak load of four 

rock types were measured to verify the self-confined 

compression model experimentally. Results showed that 

among those four rock types, the PLT peak loads increased 

linearly with their tensile strength while decreased with 

their Poisson ratio, validating the proposed model. The 

relation between PLT peak load and tensile strength was 

also validated by results from published literature. These 

results are in good agreement with numerical results and 

they both validated the self-confined compression model. 

This study provides a reasonable explanation for the 

mechanism of deducing UCS with PLT, and others can 

further study the application based on this mechanism. 
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