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This study investigated the correlations between mechanical properties and mineralogy of granite using
the digital image processing (DIP) and discrete element method (DEM). The results showed that the X-ray
diffraction (XRD)-based DIP method effectively analyzed the mineral composition contents and spatial
distributions of granite. During the particle flow code (PFC2D) model calibration phase, the numerical
simulation exhibited that the uniaxial compressive strength (UCS) value, elastic modulus (E), and failure
pattern of the granite specimen in the UCS test were comparable to the experiment. By establishing 351
sets of numerical models and exploring the impacts of mineral composition on the mechanical properties
of granite, it indicated that there was no negative correlation between quartz and feldspar for UCS, tensile
strength (rt), and E. In contrast, mica had a significant negative correlation for UCS, rt, and E. The pres-
ence of quartz increased the brittleness of granite, whereas the presence of mica and feldspar increased
its ductility in UCS and direct tensile strength (DTS) tests. Varying contents of major mineral composi-
tions in granite showed minor influence on the number of cracks in both UCS and DTS tests.
� 2023 Published by Elsevier B.V. on behalf of China University of Mining & Technology This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Many industries widely use granite as a host rock, including in
radioactive waste storage, deep mining, enhanced geothermal sys-
tems (EGS), etc. [1]. The physicomechanical properties, such as
UCS, tensile strength (rt), and elastic modulus (E), are three indices
typically employed to represent the mechanical properties of a
material [2]. Numerous researchers have used experimental,
machine learning, and numerical methods to evaluate the mechan-
ical properties of granite. Previous research has shown that the
characteristics of granite, such as mineral compositions, mineral
size distributions, mineral shapes, and micro defects, are correlated
with their mechanical properties [3].

Du et al. [2] investigated the relationship between mechanical
strength and grain size using UCS, Brazilian tension tests, and
acoustic emission (AE). Their results showed that the strength of
igneous rock was inversely proportional to the size of the mineral
grains. Coggan et al. [4] used scanning electron microscopy (SEM),
AE, and XRD to establish the relationship between the UCS and var-
ious alteration grades of granite samples. The recrystallization of
minerals at boundaries can impact the strength of granite signifi-
cantly. In addition, previous studies have found the texture of gran-
ite significantly impacts its strength variance, even with
comparable alteration grades [5]. Yılmaz et al. [6] suggested that
the spatial distribution of biotite mainly governed the Brazilian
tensile strength of granite. The application of the split Hopkinson
pressure bar (SHPB) and ultrasonic pulse transmission methods
enabled the investigation of damage to granite rock caused by
dynamic loadings [7]. However, the influence of mineral composi-
tions on the mechanical properties of granite is not evident. For
instance, Tuğrul and Zarif [8] demonstrated a positive linear rela-
tionship between the quartz-to-feldspar ratio and UCS for granite
specimens. Nevertheless, in direct contrast to the experiments con-
ducted on granitic rocks from Turkey [8], Sajid et al. [5] demon-
strated a negative association between quartz contents and UCS.

Using multiple machine models can aid in establishing the rela-
tionship between the mineral contents of granite and their
mechanical properties. Yesiloglu-Gultekin et al. [9] employed an
adaptive neuro-fuzzy inference system (ANFIS) to discover the pos-
itive relationship between quartz and UCS. In contrast, the rela-
tionships between orthoclase and UCS, and plagioclase and UCS
l image
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Fig. 1. Mineral composition contents in various granite samples: (a) Phase diagram
for the feldspar system adapted from (Tuttle and Bowen, 1958 [18]); (b) XRD data
collected from previous publications [5,8,13,21].
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were negative. In addition, Sun et al. [10] analyzed the UCS of the
jet-grouted coal-grout composite through gradient boosted regres-
sion tree (GBRT) and random forest (RF).

Several researchers have used the grain-based element model
(GBM) to understand the effect of mineralogy, mineral properties,
mineral boundary properties [11], and mineral size [12,13] on the
tensile and compressive strength, fracture pattern, and develop-
ment of specific crack types of granite [3]. During compression
testing, Hu et al. [14] identified that mineral size, distribution,
and grain boundary strength (normal strength, cohesion, and fric-
tion angle) were the most influential parameters on crack develop-
ment in a rock specimen. They assigned four micro-parameters,
i.e., particle modulus, parallel bond modulus, parallel bond tension
strength, and parallel bond cohesion, to the Weibull distribution to
reflect the micro-heterogeneity of rock. The analysis revealed that
increasing heterogeneity leads to lower UCS, E, and a more dis-
persed distribution of microcrack inclination [14]. As the percent-
age of quartz increased, the mechanical strength, E, and the total
number of microcracks increased. However, Poisson’s ratio and
maximum volumetric strain decreased gradually. The position of
the mineral has a minor but insignificant effect on the simulated
strength characteristics and micro-cracking behaviors [15]. To
examine the dynamic fracture toughness and micro-cracking char-
acteristics of granite at the grain scale, researchers developed the
SHPB system through the Particle Flow Code 3D-grain-based ele-
ment model (PFC3D-GBM) approach [16]. However, the studies
mentioned above were generally limited to a narrow range of min-
eral component proportions in granite, and systematic investiga-
tions of the effects of mineral composition on mechanical
properties were lacking.

The objective of this study is to comprehensively examine the
mechanical properties of granites, which exhibit diverse material
compositions, through the implementation of the DEM. Initially,
this study conducted a literature review to analyze the impact of
distinct mineral compositions on the mechanical characteristics
of granite in experimental studies. In the subsequent stages of this
investigation, data encompassing the mineralogical composition
and spatial distribution in the granite sample were acquired
through the application of the DIP technique. This gathered infor-
mation was then imported into the PFC2D, facilitating the con-
struction of an accurate model. The resulting PFC2D model
properly replicated both the mineralogical content and spatial dis-
tribution pattern characteristic of the actual granite specimen. This
PFC2D model was used to calibrate the parameters in comparison
to experimental data. Afterward, developing 351 sets of PFC2D
models with varying mineral compositions to explore an array of
correlations, including the contents of quartz, feldspar, and mica
to UCS, UCS failure strain (efail_UCS), rt, DTS failure strain (efail_DTS),
the number of cracks in UCS (Ncrack_UCS) and DTS (Ncrack_DTS) tests,
as well as E. Ultimately, this research compared the results pro-
cured from the discrete element methodology with findings from
existing literature to ascertain the relationship between mechani-
cal properties and mineral compositions of granite.
2. Literature review

2.1. Typical mineral compositions and properties of granite

Granite is a widespread rock type in the continental crust, pri-
marily consisting of quartz (10% to 50%), potassium feldspar (K-
feldspar), and sodium feldspar (plagioclase). These minerals com-
prise more than 80% of the compositions of granite, with other
common minerals including mica (muscovite and biotite) and
amphibole [17]. Fig. 1a is the phase diagram for the feldspar sys-
tem, which represents the relationships between the different
2

mineral phases that can form in this system as a function of tem-
perature, pressure, and chemical composition [18]. For example,
at atmospheric pressure, the feldspar system consists of three pri-
mary solid solutions: albite (NaAlSi3O8)-anorthite (CaAl2Si2O8),
albite-orthoclase (KAlSi3O8), and orthoclase-anorthite [19]. The
diagram illustrates the different chemical components, such as
potassium, sodium, and calcium, present in various types of feld-
spar [20]. Thus, the feldspar group encompasses several distinct
types, including potassium feldspar, plagioclase, orthoclase, oligo-
clase, albite, andesine, etc.

The XRD technique can determine the mineral composition of
granite. Fig. 1b presents the XRD data collected from previous pub-
lications, which are included in the body of the papers. The solid
red line indicates the mean composition content of different min-
eral components, such as feldspar, quartz, mica, and other miner-
als. Feldspar, quartz, and mica ratios typically exceed 10%,
thereby permitting them to be considered as the major mineral
components within the granite.

This study grouped a variety of feldspars, depicted in Fig. 1a, as
‘‘feldspar” because of the similarity in their crystal structure and
physical properties, regardless of their different chemical composi-
tions. Likewise, this study categorized muscovite and biotite
together under the classification of mica due to their similar crystal
structures and chemical compositions [20]. As a result, this study



Fig. 3. Relationship among mineral composition contents and mechanical proper-
ties [5–6,8,22,23,25–34].
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has focused on investigating the three primary components of
granite: feldspar, quartz, and mica.

Fig. 2 is the histogram depicting the frequency distributions of
physicomechanical properties and major component contents of
granite based on research completed by previous scholars. The typ-
ical contents of quartz, feldspar, and mica in granite are 30%, 60%,
and 10%, respectively. Additionally, granites have a typical density
(q) of 2700 kg/m3, void ratio of 0.8%, P-wave velocity (vp) of
5500 m/s, UCS of 135 MPa, E of 40 GPa, and rt of 8 MPa.

2.2. Relationship between mineral composition contents and
mechanical properties of granite

Fig. 3a presents the individual analysis of data from various
publications that have described the relationship between the
mineral composition contents and mechanical properties of gran-
ite. The red regions show a positive correlation, the blue regions
represent a negative correlation, and the white regions indicate
the absence of data. It is evident that the effect of mineral compo-
sitions on the mechanical properties of granites is subject to dis-
agreement among researchers. For instance, most researchers
found a positive correlation between quartz contents and UCS, rt,
and E, while others proposed a negative correlation. This disparity
in conclusions could be attributed to the relatively small sample
sizes of the experimental datasets. Another possible cause is that
the mechanical property of granite is independent of its mineral
compositions.

This study summarized the data from additional publications,
comprising 284 datasets for UCS, 149 for rt, and 110 for E. This
study also computed the correlation values between various prop-
erties. Fig. 3b presents the results in a heatmap. The heatmap indi-
cates that neither quartz nor feldspar negatively impacts the
mechanical properties of granites, while mica does. The effect of
quartz on E is more considerable (0.24), whereas the effect of feld-
spar on rt is also significant (0.17). Feldspar has minimal effect on
E. The correlation values between mica content and UCS, E, and rt

are �0.16, �0.26, and �0.28, respectively.
Nevertheless, one cannot simply establish a correlation

between mineral compositions and mechanical properties of gran-
ite from the current database of publications. It is also likely that a
limited database prevents the achievement of more precise results.
Fig. 2. Histogram regarding the major component contents and physicomechanical
properties of granite [3–6,8,11,22–34].
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The subsequent sections will use 351 PFC2D granite models with
varying contents of major mineral compositions to simulate the
UCS and DTS tests, resulting in a definitive conclusion.
3. Numerical simulation using PFC2D

3.1. DIP technique on the granite specimen

Granite is an intrusive igneous rock made of minerals visible to
the naked eye [35,36], such as mica in the darkest color, quartz in
the medium color, and feldspar in the lightest color [37]. Fig. 4a is
the digital image of a granite sample with a diameter of 50 mm and
a height of 100 mm from Li et al. [37]. The granite specimen con-
tains three major components (59.7% feldspar, 31.4% quartz, and
8.9% mica). The digital image consists of pixel matrices composed
of three channels, namely red, green, and blue (RGB), as illustrated
in Fig. 4c. By employing the DIP method, it is feasible to distinguish
between the distinct mineral compositions of granite from a two-
dimensional (2D) perspective, assuming different minerals have
different colors and the same minerals have identical colors. Typi-
cally, the quality of an image impacts the computational outcomes
of the DIP technique [38]. Therefore, this study enhances the image
quality to ensure it conforms to the requisite standards for image
processing.



Fig. 4. Basic information on the granite sample image from [37].
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Introducing the DIP technique in this study aims to appropri-
ately determine the mineral compositions of granite without addi-
tional physical information and to use the results for numerical
simulation modeling. In this study, however, a single channel of
the gray-scale image satisfied the image recognition requirements
and increased the efficiency of DIP by lowering the number of
channels. Therefore, this process converted the digital image to
gray-scale, as depicted in Fig. 4b. Fig. 4d illustrates the gray level
distribution of the gray-scale image. The mean value of the gray
level (l) of the granite specimen is 129.

Fig. 5b depicts a selected region from Fig. 5a. Fig. 5c is the gray
level of the selected 15�15 pixels region, with values between 0
and 255. The gray level represents the brightness of the pixel,
e.g., mica should have the lowest brightness, while feldspar should
have the highest. By dividing the gray-scale values into three inter-
vals, it is capable of distinguishing between the three major min-
eral components in the granite specimen, known as threshold
segmentation. This work introduces two methods of threshold seg-
mentation: the mean value-based DIP method and the XRD-based
DIP method (Fig. 5d and e).

Fig. 5d suggests the mechanism of the mean value-based DIP
method. It indicates that when the exact composition contents of
4

the granite sample were unknown, the value of l would be uti-
lized as the initial threshold value. Next, Fig. 4d shows the deter-
mination of various initial segmentation intervals as 0–l/2, l/2–
l, l–3l/2, and 3l/2–255. However, to better match the original
gray-scale image, the threshold value required continuous adjust-
ment based on the initial threshold value. This study, for
instance, only considered three major components of granite:
feldspar (highest gray level), quartz (medium gray level), and
mica (lowest gray level). Also, as shown in Fig. 5c, most pixels
have gray levels of less than 200. Hence, this study merged the
intervals of l–3l/2 and 3l/2–255. By continuous adjustment,
the initial segmentation intervals were ultimately altered to 0–
l/2: 0–65 (mica), l/2–l: 65–129 (quartz), and l–255: 129–255
(feldspar). The mean value-based DIP methodology determined
that the mineral component contents of feldspar, quartz, and
mica were 56.7%, 38.6%, and 4.7%. Notably, these values are rela-
tively similar to the exact XRD data of 59.7%, 31.4%, and 8.9%,
respectively.

Table 1 illustrates the mean value-based DIP method outcomes
for additional granite samples from additional publications [13,39].
The contents of some mineral compositions in granite computed
by the mean value-based DIP method were similar to the exact
XRD data, whereas others contained some errors. For example,
applying the mean value-based DIP method to the granite sample
analyzed by Zhang et al. [13], it reveals a biotite content of 6.21%,
which closely approximates the exact value of 6.00%. Conversely,
other mineral components displayed significant errors. In compar-
ison, the mean value-based DIP method applied to the granite sam-
ple studied by Yang et al. [39] demonstrated lower errors than
those observed in the analysis of the granite sample investigated
by Zhang et al. [13]. In reality, it is not feasible to ascertain the
exact mineral composition of granite solely based on its surface
characteristics. Notwithstanding, the mean value method retains
its practical utility, as it allows for the estimation of specific min-
eral fractions in rock samples where XRD tests were not per-
formed. Moreover, the data acquired using the mean value
method may be entered into numerical simulation software to
facilitate model reconstruction, thereby adding to its overall refer-
ence value.

The XRD-based DIP method involved the exact composition
contents of the granite sample under examination. In this study,
the granite sample depicted in Fig. 5a consisted of 8.9% mica,
31.4% quartz, and 59.7% feldspar. As the total number of pixels in
the granite image amounted to 320000 pixels, this study calculated
the cumulative pixel numbers corresponding to values below a
certain gray level A using Fig. 4d. Specifically, 8.9% of the pixels,
i.e., 28480 pixels, should have gray levels between 0 and A, which
was found to be 80. Similarly, this study determined segmentation
value for quartz and feldspar was 126. Ultimately, this study seg-
mented the intervals as (0, 80), (80, 126), and (126, 255). Mean-
while, in this case, the similarities of the results of two threshold
segmentation methods demonstrated that the mean value-based
DIP method was acceptable to some extent when the exact compo-
sition contents were unknown.

Therefore, the utilization of the DIP technique allows for the
restoration of the mineral composition content and spatial distri-
bution of the granite sample. Subsequently, based on the results
of the DIP technique, a numerical model that adheres to the min-
eral composition content and spatial distribution of the actual
granite sample is established, which represents an effective
approach to calibrating the numerical model.

3.2. Numerical model establishment

This research used the discrete element method PFC2D, com-
prised of discrete particles that move independently and interact



Fig. 5. Two threshold segmentation methods of DIP to detect major components in the granite specimen.

Table 1
Mean value-based DIP method executed on other granites.

Granite images XRD data DIP results Components (DIP) Error

Zhang et al. [13]

Feldspar: 53.00%
Biotite: 6.00%
Quartz: 39.00%
Others: 2.00%

Feldspar: 71.98% 35.81%
Biotite: 6.21% 3.50%
Quartz: 21.69% 44.40%
Others: 0.76% 62.00%

Yang et al. [39]

Feldspar: 59.85%
Biotite: 21.56%
Quartz: 11.12%
Others: 7.47%

Feldspar: 66.10% 10.40%
Biotite: 21.75% 0.89%
Quartz: 7.64% 31.30%
Others: 4.50% 39.76%
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during pair-wise encounters. By allowing particles to bond at their
points of contact, it is possible to depict more complex behavior.
Upon reaching the strength limit, the bond breaks, allowing tensile
forces to arise between particles. This makes it possible for tensile
5

forces to develop between particles. The method can then model
the interaction between these bonded ‘‘blocks”, including the for-
mation of fissures that may lead to the fragmentation of blocks into
smaller blocks.
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This study used the XRD-based DIP method to determine the
component spatial distribution data of granite, as illustrated in
Fig. 6b, for establishing the PFC2D model. This study obtained
the component spatial distribution data by determining the coordi-
nates and gray levels of each pixel, then imported it into PFC2D to
identify the grain boundaries of different components. Subse-
quently, generating balls with varying sizes inside the grain bound-
ary. Previous studies have utilized PFC2D to simulate granite
particles with minimum sizes ranging from 0.1 [37], 0.15 [40],
0.4 [16], and 0.5 mm [13], among others. In this study, particle
sizes ranged from 0.16 to 0.3 mm, consistent with current research
findings. The total number of particles in the established numerical
model is 33100.

3.3. Contact models in PFC2D

The PFC2D model [41] typically employs various contact mod-
els, namely, the linear contact bond model (CBM), linear parallel
bond model (PBM), flat-joint model (FJM), and smooth joint model
(SJM), for microparticles of granite. CBM involves a contact bond
with constant normal and shear stiffnesses, lacking relative rota-
tion resistance, and allowing resistance to tension and shear until
the bond strength is exceeded. However, CBM model lacks radius,
shear, and normal stiffness and cannot resist a bending moment
[42]. PBM, on the other hand, entails relative motion at the contact
following parallel bond generation, leading to the development of
force and moment within the bond material. Nonetheless, PBM
exhibits drawbacks such as suboptimal compression-tension ratio,
the inability of spherical particles and parallel linkages to provide
sufficient rotational resistance, and diminutive internal friction
angle of the model [42]. FJM, in turn, involves the installation of
contact bonds between particles with a small installation gap,
Fig. 6. PFC2D model based on the digital image of granite.
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enabling the simulation of interface behavior between two artifi-
cial surfaces firmly linked to body components. Meanwhile, SJM
simulates the behavior of a smooth interface generated by a joint
plane. It primarily encapsulates the impact of joint orientation
and inclination on the joint, which in turn significantly influences
the behavior of the entire rock mass. However, it should be noted
that SJM does not take into account the local particle contact
geometry surrounding the joint plane [43].

Previous studies have widely utilized the PBM to examine the
microscopic failure process of different rocks under varying stress
conditions [44]. Hence, it is suitable to adopt PBM in modeling the
mechanical properties of granite samples in compression and ten-
sion tests conducted in this research due to the compact internal
structure of granite, with few pores and a limited number of inter-
nal joint distributions.
3.4. Micro-properties of the PFC2D model

The primary parameters for the PBM include the effective mod-
ulus (Emod), bond effective modulus (PB_Emod), normal-to-shear
stiffness ratio (Kratio), bond normal-to-shear stiffness ratio
(PB_Kratio), friction coefficient (Fric), particle density, tensile
strength (PB_ten), cohesion (PB_coh), and friction angle (PB_fa).
Fig. 7 illustrates the probability density distribution of multiple
microscopic property parameters.

In order to calibrate the DEM parameters for granite, it is neces-
sary to adjust its microscopic numerical parameters to fit the
mechanical properties of the material during the calibration pro-
cess. Therefore, this calibration requires continuous correction of
the microscopic numerical parameters of granite. To facilitate the
calibration process and achieve optimal results, it is important to
establish initial value ranges for each microscopic parameter,
which one can determine based on the results presented in Fig. 7.

This study selected the values corresponding to the 80% proba-
bility density peak of each parameter as the starting and ending
values for the parameter range, as shown in Fig. 7. For instance,
when establishing the range of Young’s modulus (Emod) for each
major component, the 80% density peak corresponds to the values
of 15 and 60 GPa for feldspar, 25 and 75 GPa for quartz, and 10 and
45 GPa for mica. Consequently, the Emod value ranges for feldspar,
quartz, and mica will be 15–60, 25–75, and 10–45 GPa, respec-
Fig. 7. Probability density function curves of microscopic property parameters of
several mineral components in granite employed in PBM [3,11,12,15,16,37,45,46].



Table 2
Summaries of numerical parameter value ranges employed in PBM.

Properties Feldspar Quartz Mica

Emod (GPa) 15–60 25–75 10–45
PB_Emod (GPa) 15–50 25–75 10–45
Kratio 1.7–2.2 0.8–1.4 1.0–2.6
PB_Kratio 1.7–2.2 0.8–1.4 1.2–2.0
Fric 0.4–0.8 0.4–0.8 0.4–0.7
q (kg/m3) 2500–2700 2600–2700 2700–2900
PB_ten (MPa) 40–150 40–150 20–150
PB_coh (MPa) 30–180 30–180 20–150
PB_fa (�) 20–42 20–50 20–40
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tively. Table 2 shows the ultimate numerical parameter value
ranges utilized by the PBM. However, the summary of parameter
value ranges provided in Table 2 can only serve as a reference for
calibrating the numerical simulation. Additional parameter cali-
Table 3
Parameter values of PBM employed in the PFC2D model.

Properties Feldspar Quartz

Emod (GPa) 18 28
PB_Emod (GPa) 18 28
Kratio 2.2 1.4
PB_Kratio 2.2 1.4
Fric 0.577 0.577
q (kg/m3) 2500 2600
PB_ten (MPa) 42 48
PB_coh (MPa) 44 48
PB_fa (�) 40 30

Notes: F-Q is the interface between feldspar and quartz; F-M the interface between feld

Fig. 8. UCS curves and the failure mode
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bration adjustments within the range of values provided in Table 2
may be made if necessary.

3.5. Calibration of the PFC2D model

This section describes the calibration of the PFC2D model using
experimental data (UCS) from a previous study [37]. Table 3 lists
the parameter values of PBM employed in the PFC2D model. The
parameters between two distinct minerals are the average of the
parameters of each individual mineral [37]. Moreover, the current
section undertakes a comparative analysis of the influence of
diverse loading rates and boundary conditions on the UCS test out-
comes. Fig. 8a illustrates the single-end loading executed at a rate
of 0.1 m/s. Furthermore, Fig. 8b exhibits the utilization of loading
rates of 0.1, 0.2, 0.4, and 0.8 m/s for both-ends loading. Fig. 8c–e
present the UCS curves and failure modes of the granite specimen,
encompassing both the numerical and experimental results.
Mica F-Q F-M Q-M

10
10 23 14 19
2.0
2.0 1.8 2.1 1.7
0.577 0.577 0.577 0.577
2700
22 45 32 35
22 46 33 35
40 35 40 35

spar and mica; and Q-M the interface between quartz and mica.

[37] under various loading patterns.



Fig. 9. PFC models of granite with various mineral component contents.

Fig. 10. Relationship between mechanical properties and major mineral compo-
nent contents of granite.

Fig. 11. Confidence interval of normal distribution and confidence ellipse.
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Various loading patterns, such as the loading rate and boundary
condition, exert disparate impacts on the UCS and the failure
mode, although the computed elastic modulus remains similar. A
higher loading rate permits the granite specimen to enter the fail-
ure phase earlier, thereby shortening the computation time. How-
ever, it may result in overestimating the UCS and extending the
scope of failure. This investigation has revealed that the UCS of
granite obtained from numerical simulations agrees more closely
with experimental results when applying loading rates of 0.1 and
0.2 m/s to both granite ends. Nevertheless, the fracture propaga-
tion pattern corresponding to a loading rate of 0.1 m/s is the closest
to the actual damage mode. Conversely, the results obtained for a
loading rate of 0.2 m/s do not correspond with the actual damage
pattern due to the broader fracture propagation area. Conse-
quently, this study selected the loading rate of 0.1 m/s for both
ends of the PFC2D models and used the microscopic parameters
presented in Table 3.

3.6. PFC2D models for analyzing mechanical properties of granites
with varying major mineral contents under UCS and DTS tests

This section discusses granite samples with varying proportions
of major components (quartz, feldspar, and mica), following the
calibration and confirmation of the microscopic parameters of
the PFC2D model. Particles in the PFC2D model have ID numbers
ranging from 1 to 33100, making it easy to categorize them ran-
domly into three groups based on their ID numbers. Notably, the
investigation only focuses on the impact of different material com-
positions, with no consideration given to mineral size or porosity.
Therefore, this study investigated 351 sets of models by construct-
ing numerical models with different proportions from 0% to 100%
(at 4% intervals) of each major component, as shown in Fig. 9.
UCS tests and DTS tests were conducted on the numerical models
to collect the UCS, rt, efail_UCS, efail_DTS, Ncrack_UCS, Ncrack_DTS, and E.

4. Numerical simulation results

This section discusses the results obtained from the PFC2D
models. Fig. 10 shows the relationship between mechanical prop-
erties (UCS and rt) and major mineral component contents of gran-
ite, normalizing the values of UCS and rt to the range of 0–50% for a
better visualization. Fig. 10 illustrates that quartz and feldspar
exhibit positive effects on UCS and rt, while mica shows negative
effects on UCS and rt. It also reveals that both UCS and rt values
are relatively low in a limited range of major component contents,
including feldspar (0–40%), quartz (0–50%), and mica (60%–100%).
When feldspar exceeds 40% or quartz exceeds 50%, UCS and rt

change significantly. However, this study can only obtain partial
results from Fig. 10, and the specific mechanism of the effects of
mineral contents on the mechanical properties of granite will
require additional analyses.

The further analyses in this study utilized the concept of confi-
dence ellipses for 2D datasets, as described in previous literature
[47]. In a normal distribution, there is a 68.2% probability that
the actual mean value falls within 1r, 95.4% within 2r, and
99.7% within 3r, as depicted in Fig. 11. For the confidence ellipse,
the horizontal radius equals to

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ p

p
, and the vertical radius is

ffiffiffiffiffiffiffiffiffiffiffiffi
1� p

p
, where p is the Pearson correlation coefficient, and it is

defined by:

p ¼ covxy

rxry
ð1Þ

where covxy is the covariance of variable x and y; rx the standard
deviation of variable x; and ry the standard deviation of variable
y. Therefore, a large Pearson correlation coefficient (p) implies a sta-
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tistically significant difference between the horizontal and vertical
radii, resulting in a narrow confidence ellipse, as shown in
Fig. 11b, which suggests a strong correlation. Conversely, a low
Pearson correlation coefficient (p) indicates a minimal difference
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between the horizontal and vertical radii, leading to a wide confi-
dence ellipse, as shown in Fig. 11c, which represents a weak
correlation.

4.1. Mechanical properties of granites with varying major mineral
contents in the UCS test

Fig. 12 illustrates the correlations between the major mineral
component contents of granites and their corresponding UCS,
Fig. 12. Relationships between the major mineral compositions of granite
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efail_UCS, Ncrack_UCS, and E, as determined via UCS tests. Consistent
with previous findings (Fig. 3b), the results demonstrate that
quartz and feldspar exert positive effects on UCS, while mica has
a negative impact. Notably, mica exhibits the strongest correlation
with UCS among the three major mineral components, with
increasing mica content resulting in a significant decrease in UCS.
In a particular mineral content range, such as 0–75%, the effect of
quartz and feldspar contents on UCS is minimal. The magnitude
of UCS is approximately 120 MPa; however, when the content
and their corresponding UCS, efail_UCS, Ncrack_UCS, and E in the UCS test.



Fig. 13. Relationships between the major mineral compositions of granite and their corresponding rt, efail_DTS, and Ncrack_DTS in the DTS test.
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exceeds 75%, UCS varies considerably and exhibits an increasing
trend. Mica, however, has a very substantial effect on UCS when
its content varies between 0 and 60%, as evidenced by a gradual
decrease. When the mica percentage is greater than 60%, mica does
not have a significant effect on the UCS.

The three major mineral components also show a correlation
with failure strain. Quartz has a substantially higher correlation
(negative correlation) with the failure strain than the other two
components (positive correlation). This correlation suggests that
the presence of quartz increases the brittleness of granite, whilst
the presence of feldspar and mica increases its ductility. When
the granite sample enters the failure phase, the number of micro-
cracks will grow substantially. Therefore, a higher quartz content
of granite may make it more susceptible to brittle failure in the
UCS test. Additionally, the presence of feldspar and mica has posi-
tive effects on the failure strain, suggesting that they may con-
tribute to the ductility of granite.

Quartz is found to have a significant impact on the elastic mod-
ulus, as most values fall within the range of 2r of the confidence
ellipse. However, the presence of mica has adverse effects. Feldspar
has less effect on the elastic modulus of granite than quartz and
10
mica. In addition, when the quartz content is within a particular
range, such as 0 to 25%, the associated modulus is primarily cen-
tered around a certain value, i.e., 30 GPa. However, outside this
range, the modulus increased gradually. The influence of mica on
the elastic modulus ranges from 0 to 100%, meaning that as mica
content increases, the modulus of elasticity decreases. The correla-
tion between feldspar and elastic modulus is weak. Therefore, feld-
spar does not show a significant influence on the elastic modulus.
The contents of three major mineral components have minor
effects on the crack numbers in granite specimens. For example,
an increase in quartz content is associated with a slight increase
in crack numbers. In contrast, increased mica content exhibits a
minor decrease in crack numbers. Nonetheless, feldspar content
has a weak correlation with the crack number generated in the
UCS test.

4.2. Mechanical properties of granites with varying major mineral
contents in the DTS test

Fig. 13 shows relationships between the major mineral compo-
sitions of granites and their rt, efail_DTS, and Ncrack_DTS in the DTS
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test. Similar to the findings of UCS tests, boosting the amount of
quartz and feldspar strengthens granite in the DTS test, while
increasing the proportion of mica has the opposite effect. Mica
has the strongest correlation with the rt, followed by quartz and
feldspar, meaning that the rt reduced significantly with increasing
mica content. In a specific mineral content range, such as 0 to 80%,
the effect of quartz and feldspar contents has a limited effect on rt,
and rt is predominantly concentrated at roughly 20 MPa; however,
when their amount reaches 80%, rt fluctuates much more and
demonstrates a rising trend. Mica has a significant impact on rt

when its concentration varies between 0 and 50%, as indicated
by a progressive decline. When the proportion of mica exceeds
50%, the effect of increasing mica concentration on rt diminishes.

Similar to the results in the UCS test, there is an evident corre-
lation between three major mineral components and the failure
strain in the DTS test. Quartz has a substantial negative correlation
with the failure strain in the DTS test. Mica and feldspar showcase
a positive correlation with the failure strain in the DTS test. This
correlation suggests that the presence of quartz increases the brit-
tleness of granite, whilst the presence of mica and feldspar
Fig. 14. Relationship between various pro
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increases its ductility in the DTS test. When the granite sample
enters the failure phase, the number of microcracks will grow sub-
stantially. Therefore, granite with higher quartz content may be
more susceptible to brittle failure in the DTS test. Additionally,
the presence of mica and feldspar has positive effects on the value
of efail_DTS, suggesting that they may contribute to the ductility of
granite. In the DTS test, the influence of the three minerals in gran-
ite on the generation of fractures is rather limited. To illustrate, an
escalation in the content of quartz and feldspar slightly reduces the
production of fractures, whereas an increase in mica content
slightly amplifies the number of fractures generated.

5. Discussion

Fig. 14 is the pair plot containing the properties mentioned
above, which visualizes the qualitative relationships between the
different variables. Fig. 15 shows the numerical results of the heat-
map among various properties. This study found that the pattern
exhibited by the numerical results was comparable to the calcu-
lated results shown in Fig. 3b. Specifically, this study found that
perties of granite (numerical results).
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there was no negative correlation between quartz and feldspar for
UCS, rt, and E. Conversely, this study found mica to be negatively
correlated with the UCS, rt, and E.

Table 4 displays the mechanical properties of quartz, feldspar,
and mica. The compressive strength of mica is lower than that of
quartz and feldspar, which implies that the strength of granite,
including its UCS and rt, decreases as the content of mica
increases. Conversely, the strength of granite increases as the con-
tents of quartz and feldspar increase. Additionally, it has been
observed that mica and feldspar possess a comparatively higher
Poisson’s ratio than quartz. This characteristic may potentially con-
tribute towards enhancing energy dissipation, thereby alleviating
stress concentration.

Based on an investigation of the crystal structure of three major
mineral compositions, mica crystals consist of pseudo-hexagonal
flakes, scales, plates, and occasional pseudo-hexagonal columns.
Quartz crystals are hexagonal columns that are typically found in
clusters, materials, and large aggregates. Feldspar crystals are pre-
dominantly in the form of plates or plate columns extending along
a certain crystallographic axis. The crystal structures of mica and
feldspar are more ductile than those of quartz, which permits their
presence to raise the failure strain in granite [20]. These are poten-
tial causes for the low strength and high toughness of mica.

The trends observed in the numerical simulation outcomes
align with the experimental results in terms of correlating various
influential factors; however, it is important to highlight that the
correlation coefficient values obtained differ. A potential explana-
tion for this issue is that the granite samples used in the experi-
ments come from different regions and are situated in different
geological conditions. In addition to the differences in mineral frac-
tion and distribution, there are also other differences, such as the
degree of weathering of granite, the internal pores and natural
fractures, and the grain size. The numerical simulations in this
study concentrate exclusively on a single factor, mineral content,
while neglecting other variables which might affect the mechanical
Fig. 15. Heatmap among various properties (numerical results).

Table 4
Lists of E and Poisson’s ratio m of minerals.

Minerals E (GPa) [48] Compressive strength (MPa) [49] m [48]

Quartz 95.6 100–300 0.079
Feldspar 69.7 100–300 0.301
Mica 88.1 70–140 0.248
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properties of granite. For example, to investigate the influence of
the mineral size of granite, it is essential to initially examine the
mineral size characteristics of granite. From a statistical stand-
point, the size of minerals in granite may adhere to a particular
probability distribution, and the disparities in mechanical proper-
ties of granites corresponding to different size probability distribu-
tions are noteworthy. These aspects warrant further investigation
in future research.

Therefore, the findings of this study are valuable because this
research focuses on the qualitative influence of granite compo-
nents on their mechanical properties. In engineering applications,
it is occasionally necessary to predict the strength of granite based
on several non-destructive parameters as inputs, such as XRD data,
density, p-wave velocity, void ratio, etc. If one has a general under-
standing of the relationship between the inputs (non-destructive
parameters) and the output parameter (strength), the prediction
model can be optimized more effectively. Therefore, the outcomes
of this study can provide a reference for analyzing the relationship
between XRD data and the mechanical properties of granite.

However, the DIP technique used in this paper only processes
2D images, and the quality of 2D images is very demanding. The
digital images used for DIP should ideally have even natural light
on the rock surface. DIP is more suitable for distinguishing materi-
als with large color contrasts, while it is difficult to identify mate-
rials with similar surface colors but vastly different properties. In
order to significantly enhance the applicability of the DIP method-
ology, it is necessary to combine more feature extraction tech-
niques in future studies. Meanwhile, it is crucial to expand the
analysis to 3D, as this would provide a more accurate depiction
of the stress distribution features of the rock sample under various
stress conditions.

Overall, the findings of this study regarding the correlations
betweenmineral components and mechanical properties of granite
could have practical implications for engineering projects involv-
ing granite. For example, the information on which mineral com-
ponents have positive or negative effects on UCS and failure
strain could be useful in informing decisions about which types
of granite to use for different applications. Similarly, the informa-
tion on the effects of mineral content on elastic modulus could
be useful in determining how to design structures made of granite
to withstand different types of stresses. Meanwhile, the informa-
tion on the relationships between mineral components and
mechanical properties of granite could have broader implications
for the understanding of geological processes. These findings may
shed light on how different types of rock form and how tectonic
processes affect them over time.

6. Conclusions

This study initially used the DIP method to uncover both the
contents and spatial distributions of minerals within the granite
image. Subsequent to the DIP findings, PFC2D models with various
mineral compositions (quartz, feldspar, and mica) were established
to investigate the relationship between mineral composition and
mechanical properties of granite. The results provide insights into
the potential use of these methods in understanding the mechan-
ical behavior of granite. As such, this study has drawn the follow-
ing conclusions:

(1) The DIP method is effective in detecting the mineral compo-
sition contents and spatial distributions of granite samples.
Studies can utilize the mean value-based DIP method if the
exact mineral composition contents of the granite sample
are unknown. If it is given, the XRD-based DIP method is
capable of obtaining the mineral composition data (mineral
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types and spatial distributions). By importing the computed
mineral composition data into the numerical simulation
software, one can accurately construct the discrete element
model.

(2) Based on results computed by 351 sets of numerical models,
the pattern exhibited by the numerical simulation is compa-
rable to the literature data. There is no negative correlation
between quartz and feldspar for UCS, rt, and E. A significant
positive correlation exists between the quartz and E. How-
ever, the relationship between feldspar and E demonstrates
a weak correlation. Mica has a significant negative correla-
tion for UCS, rt, and E.

(3) The presence of quartz increases the brittleness of granite,
whilst the presence of mica and feldspar increases its ductil-
ity in the UCS and DTS tests.

(4) Varying contents of major mineral compositions (quartz,
feldspar, and mica) in granites have a minor influence on
the number of cracks developed in UCS and DTS tests.
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